Ashok Goel

Ashok Goel

Ashok Goel

Professor; School of Interactive Computing
Director| Ph.D. program in Human-Centered Computing; College of Computing
Co-Director; Center for Biologically Inspired Design
Fellow; Brook Byers Institute for Sustainable Systems

Ashok Goel is a Professor of Computer Science in the School of Interactive Computing at Georgia Institute of Technology in Atlanta, USA. He obtained his Ph.D. from The Ohio State University. At Georgia Tech, he is also the Director of the Ph.D. Program in Human-Centered Computing, a Co-Director of the Center for Biologically Inspired Design, and a Fellow of Brook Byers Institute for Sustainable Systems. For more than thirty years, Ashok has conducted research into artificial intelligence, cognitive science and human-centered computing, with a focus on computational design, modeling and creativity. His recent work has explored design thinking, analogical thinking and systems thinking in biological inspired design (https://www.youtube.com/watch?v=wiRDQ4hr9i8), and his research is now developing virtual research assistants for modeling biological systems. Ashok teaches a popular course on knowledge-based AI as part of Georgia Tech's program on Online Masters of Science in Computer Science. He has pioneered the development of virtual teaching assistants, such as Jill Watson, for answering questions in online discussion forums (https://www.youtube.com/watch?v=WbCguICyfTA). Chronicle of Higher Education recently called virtual assistants exemplified by Jill Watson as one of the most transformative educational technologies in the digital era. Ashok is the Editor-in-Chief of AAAI's AI Magazine.

ashok.goel@cc.gatech.edu

Office Location:
GVU/TSRB

Design & Intelligence Laboratory

Google Scholar

Research Focus Areas:
  • Human Augmentation
  • Platforms and Services for Socio-Technical Frontier
  • Shaping the Human-Technology Frontier
  • Additional Research:

    Artificial Intelligence; Cognitive Science; Computational Design; Computational Creativity; Educational Technology; Design Science; Learning Science and Technology; Human-Centered Computing


    IRI Connections:

    Nagi Gebraeel

    Nagi Gebraeel

    Nagi Gebraeel

    Georgia Power Associate Professor

    Professor Nagi Gebraeel is the Georgia Power Early Career Professor and Professor in the H. Milton Stewart School of Industrial and Systems Engineering at Georgia Tech. He received his MS and PhD from Purdue University in 1998 and 2003, respectively.

    Dr. Gebraeel's research interests lie at the intersection of Predictive Analytics and Machine Learning in IoT enabled maintenance, repair and operations (MRO) and service logistics. His key focus is on developing fundamental statistical learning algorithms specifically tailored for real-time equipment diagnostics and prognostics, and optimization models for subsequent operational and logistical decision-making in IoT ecosystems. Dr. Gebraeel also develops cyber-security algorithms intended to protect IoT-enabled critical assets from ICS-type cyberattacks (cyberattacks that target Industrial Control Systems). From the standpoint of application domains, Dr. Gebraeel has general interests in manufacturing, power generation, and service-type industries. Applications in Deep Space missions are a recent addition to his research interests, specifically, developing Self-Aware Deep Space Habitats through NASA's HOME Space Technology Research Institute.

    Dr. Gebraeel leads Predictive Analytics and Intelligent Systems (PAIS) research group at Georgia Tech's Supply Chain and Logistics Institute. He also directs activities and testing at the Analytics and Prognostics Systems laboratory at Georgia Tech's Manufacturing Institute. Formerly, Dr. Gebraeel served as an associate director at Georgia Tech's Strategic Energy Institute (from 2014 until 2019) where he was responsible for identifying and promoting research initiatives and thought-leadership at the intersection of Data Science and Energy applications. He was also the former president of the Institute of Industrial and Systems Engineers (IISE) Quality and Reliability Engineering Division, and is currently a member of the Institute for Operations Research and the Management Sciences (INFORMS), and IISE (since 2005).

    nagi.gebraeel@isye.gatech.edu

    404.894.0054

    Office Location:
    Groseclose Building, Room 327

    Website

    Research Focus Areas:
  • Diagnostics
  • Energy
  • Machine Learning
  • Additional Research:

    Data Mining; Sensor-based prognostics and degradation modeling; reliability engineering; maintenance operations and logistics; System Design & Optimization; Utilities; Cyber/ Information Technology; Oil/Gas


    IRI Connections:

    King Jordan

    King Jordan

    King Jordan

    Professor
    Director, Bioinformatics Graduate Program

    King Jordan is Professor in the School of Biological Sciences and Director of the Bioinformatics Graduate Program at the Georgia Institute of Technology. He has a computational laboratory and his group works on a wide variety of research and development projects related to: (1) human clinical & population genomics, (2) computational genomics for public health, and (3) computational approaches to functional genomics. He is particularly interested in the relationship between human genetic ancestry and health. His lab is also actively engaged in capacity building efforts in genomics and bioinformatics in Latin America. 

    king.jordan@biology.gatech.edu

    404-385-2224

    Office Location:
    EBB 2109

    Website

  • http://biosciences.gatech.edu/people/king-jordan
  • Google Scholar

    Research Focus Areas:
  • Bioinformatics
  • Computational Genomics
  • Public Health
  • Additional Research:
    Epigenetics ; Computational genomics for public health. We are broadly interested in the relationship between genome sequence variation and health outcomes. We study this relationship through two main lines of investigation - human and microbial.Human:we study how genetic ancestry and population structure impact disease prevalence and drug response. Our human genomics research is focused primarily on complex common disease and aims to characterize the genetic architecture of health disparities, in pursuit of their elimination.Microbial:we develop and apply genome-enabled approaches to molecular typing and functional profiling of microbial pathogens that cause infectious disease. The goal of our microbial genomics research is to empower public health agencies to more effectively monitor and counter infectious disease agents.

    IRI Connections:

    Martha Grover

    Martha Grover

    Martha Grover

    Professor, School of Chemical and Biomolecular Engineering
    Associate Chair for Graduate Studies, School of Chemical and Biomolecular Engineering
    James Harris Faculty Fellow, School of Chemical and Biomolecular Engineering
    Member, NSF/NASA Center for Chemical Evolution

    Grover’s research activities in process systems engineering focus on understanding macromolecular organization and the emergence of biological function. Discrete atoms and molecules interact to form macromolecules and even larger mesoscale assemblies, ultimately yielding macroscopic structures and properties. A quantitative relationship between the nanoscale discrete interactions and the macroscale properties is required to design, optimize, and control such systems; yet in many applications, predictive models do not exist or are computationally intractable.

    The Grover group is dedicated to the development of tractable and practical approaches for the engineering of macroscale behavior via explicit consideration of molecular and atomic scale interactions. We focus on applications involving the kinetics of self-assembly, specifically those in which methods from non-equilibrium statistical mechanics do not provide closed form solutions. General approaches employed include stochastic modeling, model reduction, machine learning, experimental design, robust parameter design, and estimation.

    martha.grover@chbe.gatech.edu

    404.894.2878

    Office Location:
    ES&T 1228

    Grover Group

  • ChBE Profile Page
  • Google Scholar

    Research Focus Areas:
  • Electronic Materials
  • Molecular Evolution
  • Nuclear
  • Additional Research:
    Colloids; Crystallization; Organic and Inorganic Photonics and Electronics; Polymers; Discrete atoms and molecules interact to form macromolecules and even larger mesoscale assemblies, ultIMaTely yielding macroscopic structures and properties. A quantitative relationship between the nanoscale discrete interactions and the macroscale properties is required to design, optimize, and control such systems; yet in many applications, predictive models do not exist or are computationally intractable. The Grover group is dedicated to the development of tractable and practical approaches for the engineering of macroscale behavior via explicit consideration of molecular and atomic scale interactions. We focus on applications involving the kinetics of self-assembly, specific those in which methods from non-equilibrium statistical mechanics do not provide closed form solutions. General approaches employed include stochastic modeling, model reduction, machine learning, experimental design, robust parameter design, estIMaTion, and optimal control, monitoring and control for nuclear waste processing and polymer organic electronics

    IRI Connections:

    M.G. Finn

    M.G. Finn

    M.G. Finn

    Chair and Professor
    James A. Carlos Family Chair for Pediatric Technology

    We develop chemical and biological tools for research in a wide range of fields. Some of them are briefly described below; please see our group web page for more details. Chemistry, biology, immunology, and evolution with viruses. The sizes and properties of virus particles put them at the interface between the worlds of chemistry and biology. We use techniques from both fields to tailor these particles for applications to cell targeting, diagnostics, vaccine development, catalysis, and materials self-assembly. This work involves combinations of small-molecule and polymer synthesis, bioconjugation, molecular biology, protein design, protein evolution, bioanalytical chemistry, enzymology, physiology, and immunology. It is an exciting training ground for modern molecular scientists and engineers. Development of reactions for organic synthesis, chemical biology, and materials science. Molecular function is what matters most to our scientific lives, and good chemical reactions provide the means to achieve such function. We continue our efforts to develop and optimize reactions that meet the click chemistry standard for power and generality. Our current focus is on highly reliable reversible reactions, which open up new possibilities for polymer synthesis and modification, as well as for the controlled delivery of therapeutic and diagnostic agents to biological targets. Traditional and combinatorial synthesis of biologically active compounds.We have a longstanding interest in the development of biologically active small molecules. We work closely with industrial and academic collaborators on such targets as antiviral agents, compounds to combat tobacco addiction, and treatments for inflammatory disease.

    Faces of Research - Profile Article

    mgfinn@gatech.edu

    404-385-0906

    Office Location:
    MoSE 2201B

    Website

    Google Scholar

    Research Focus Areas:
  • Biomaterials
  • Drug Design, Development and Delivery
  • Molecular Evolution

  • IRI Connections:

    Constantine Dovrolis

    Constantine Dovrolis

    Constantine Dovrolis

    Professor
    For more than a decade, Constantine Dovrolis has been exploring the evolution of our interconnected world. Dovrolis serves as a Professor in the School of Computer Science, College of Computing at the Georgia Institute of Technology and is an affiliate of the Institute for Information Security & Privacy. He received his Bachelor's of Computer Engineering from the Technical University of Crete in 1995; Master’s degree from the University of Rochester in 1996, and his Doctoral degree from the University of Wisconsin-Madison in 2000.  Prior to joining Georgia Tech in August 2002, Dovrolis held visiting positions at Thomson Research in Paris, Simula Research in Oslo, and FORTH in Crete. His current research focuses on the evolution of the Internet, Internet economics, and on applications of network measurement.  He also is interested in cross-disciplinary applications of network science as it relates to biology, clIMaTe science and neuroscience. Dovrolis has served as an editor for the IEEE/ACM’s Transactions on Networking, the ACM Communications Review, and he served as the program co-chair for PAM'05, IMC'07, CoNEXT'11, and as the general chair for HotNets'07.  He was honored with the National Science Foundation CAREER Award in 2003.                                                   

    constantine@gatech.edu

    404-385-4205

    Office Location:
    Klaus 3346

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Neuroscience
  • Systems Biology
  • Additional Research:
    Data Mining & Analytics; IT Economics; Internet Infrastructure & Operating Systems Network science is an emerging discipline focusing on the analysis and design of complex systems that can be modeled as networks. During the last decade or so network science has attracted physicists, mathematicians, biologists, neuroscientists, engineers, and of course computer scientists. I believe that this area has the potential to create major scientific breakthroughs, especially because it is highly interdisciplinary. We have applied network science methods to investigate the "hourglass effect" in developmental biology. The developmental hourglass' describes a pattern of increasing morphological divergence towards earlier and later embryonic development, separated by a period of significant conservation across distant species (the "phylotypic stage''). Recent studies have found evidence in support of the hourglass effect at the genomic level. For instance, the phylotypic stage expresses the oldest and most conserved transcriptomes. However, the regulatory mechanism that causes the hourglass pattern remains an open question. We have used an evolutionary model of regulatory gene interactions during development to identify the conditions under which the hourglass effect can emerge in a general setting. The model focuses on the hierarchical gene regulatory network that controls the developmental process, and on the evolution of a population under random perturbations in the structure of that network. The model predicts, under fairly general assumptions, the emergence of an hourglass pattern in the structure of a temporal representation of the underlying gene regulatory network. The evolutionary age of the corresponding genes also follows an hourglass pattern, with the oldest genes concentrated at the hourglass waist. The key behind the hourglass effect is that developmental regulators should have an increasingly specific function as development progresses. Analysis of developmental gene expression profiles from Drosophila melanogaster and Arabidopsis thaliana provide consistent results with our theoretical predictions. We are currently working on the inference and analysis of functional and brain networks. More information about this project will be posted soon.

    IRI Connections:

    Robert Dickson

    Robert Dickson

    Robert Dickson

    Professor

    Dr. Dickson is the Vassar Woolley Professor of Chemistry & Biochemistry and has been at Georgia Tech since 1998. He was a Senior Editor of The Journal of Physical Chemistry from 2010-2021, and his research has been continuously funded (primarily from NIH) since 2000. Dr. Dickson has developed quantitative bio imaging and signal recovery/modulation schemes for improved imaging of biological processes and detection of medical pathologies. His work on fluorescent molecule development and photoswitching of green fluorescent proteins was recognized as a key paper for W.E. Moerner’s 2014 Nobel Prize in Chemistry. Recently, Dr. Dickson’s lab has developed rapid susceptibility testing of bacteria causing blood stream infections. Their rapid recovery methods, coupled with rigorous multidimensional statistics and machine learning have led to very simple, highly accurate and fast methods for determining the appropriate treatment within a few hours after positive blood cultures. These hold significant potential for drastically improving patient outcomes and reducing the proliferation of antimicrobial resistance.

    robert.dickson@chemistry.gatech.edu

    404-894-4007

    Office Location:
    MoSE G209A

    Website

  • Related Site
  • Google Scholar

    Additional Research:
    Dr. Dickson's group is developing novel spectroscopic, statistical, and imagingtechnologies for the study of dynamics in biology and medicine.

    IRI Connections:

    Flavio Fenton

    Flavio Fenton

    Flavio Fenton

    Professor

    flavio.fenton@physics.gatech.edu

    516-672-6003

    Office Location:
    Howey N05

    Website

  • Related Site
  • Google Scholar

    University, College, and School/Department
    Research Focus Areas:
  • High Performance Computing
  • Additional Research:
    High performance computing: ·Development and implementation of novel algorithms to solve partial differential equations in two- and three-dimensional regular and irregular domains. ·Computer modeling of complex systems using supercomputers, as well as graphics cards (GPUs). ·Simulations and large data visualization of complex systems in or near-real time locally or over the web. Experiments in complex systems: ·Cardiac dynamics.Study the voltage and calcium dynamics of cardiac tissue using heart sections or whole hearts from fish and mice to large mamals horses. Using voltage- and calcium-sensitive dyes and ultrafast cameras, we record the dynamics of voltage and calcium waves and study their instabilities associated with arrhythmias. ·Dynamics of spiral and scroll waves. ·Mechanisms of bifurcation and period-doublings in time and in space. ·Methods for chaos control and synchronization. ·Chemical, physical, and other biophysical oscillators with complex dynamics and instabilities. Examples: spiral and scroll waves in the Belousov–Zhabotinsky reaction, saline oscillator. Mathematical modeling of complex systems: ·Development and analysis of mathematical models that describe generic or detailed dynamics of excitable and oscillatory media (heart, neurons, chemical reactions, calcium signaling, physical and biological oscillators, etc.). ·Study of bifurcations and chaotic (organized and disorganized) dynamics of excitable and oscillatory systems. ·Develop and apply control methods for suppressing or synchronizing complex dynamics. ·Study of stability and instabilities of spiral waves and three-dimensional scroll waves in idealized and realistic domains of excitable media. In most projects there is crossover between theory, simulations and experiments, where experiments (simulations) are used to guide theory and simulations (experiments).

    IRI Connections:

    Seth Hutchinson

    Seth Hutchinson

    Seth Hutchinson

    Executive Director of the Institute for Robotics and Intelligent Machines, Professor and KUKA Chair for Robotics

    I am currently Professor and KUKA Chair for Robotics in the School of Interactive Computing, and the Executive Director of the Institute for Robotics and Intelligent machines at the Georgia Institute of Technology. I am also Emeritus Professor of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign.

    seth@gatech.edu

    404-385-7583

    Office Location:
    Klaus Advanced Computing Building | Suite 1322

    Personal Page

  • College of Computing Profile
  • Google Scholar

    Research Focus Areas:
  • Autonomy
  • Shaping the Human-Technology Frontier
  • Additional Research:

    Robots never know exactly where they are, what they see, or what they're doing. They live in dynamic environments, and must coexist with other, sometimes adversarial agents. Robots are nonlinear systems that can be underactuated, redundant, or constrained, giving rise to complicated problems in automatic control. Many of even the most fundamental computational problems in robotics are provably hard. Over the years, these are the issues that have driven my group's research in robotics. Topics of our research include visual servo control, planning with uncertainty, pursuit-evasion games, as well as mainstream problems from path planning and computer vision.


    IRI Connections:

    Rich DeMillo

    Rich DeMillo

    Richard, Rich DeMillo

    Professor

    Richard DeMillo is the Charlotte B. and Roger C. Warren Professor of Computing at Georgia Tech. He was formerly the John P. Imlay Dean of Computing. Positions he has held prior to joining Georgia Tech include: Chief Technology Officer for Hewlett-Packard, Vice President of Computing Research for Bell Communications Research, Director of the Computer Research Division for the National Science Foundation, and Director of the Software Test and Evaluation Project for the Office of the US Secretary of Defense. He has also held faculty positions at the University of Wisconsin, Purdue University and the University of Padua, Italy. His research includes over 100 articles, books and patents in algorithms, software and computer engineering, cryptography, and cyber security. In 1982, he wrote the first policy for testing software intensive systems for the US Department of Defense. DeMillo and his collaborators launched and developed the field of program mutation for software testing. He is a co-inventor of Differential Fault Cryptanalysis and holds what is believed to be the only patent on breaking public key cryptosystems. He currently works in the area of election and voting system security. His work has been cited in court cases, including a 2019 Federal Court decision declaring unconstitutional the use of paperless voting machines. He has served as a foreign election observer for the Carter Center and is a member of the State of Michigan Election Security Commission. He has served on boards of public and private cybersecurity and privacy companies, including RSA Security and SecureWorks. He has served on many non-profit and philanthropic boards including the Exploratorium and the Campus Community Partnership Foundation (formerly the Rosalind and Jimmy Carter Foundation). He is a fellow of both the Association for Computing Machinery and the American Association for the Advancement of Science. In 2010, he founded the Center for 21st Century Universities, Georgia Tech’s living laboratory for fundamental change in higher education. He served as Executive Director for ten years. He was named Lumina Foundation Fellow for his work in higher education. His 2015 book Revolution in Higher Education, published by MIT Press, won the Best Education Book award from the American Association of Publishers and helped spark a national conversation about online education.  He co-chaired Georgia Tech’s Commission on Creating the Next in Education.  The Commission’s report was released in 2018. He received the ANAK Society’s Outstanding Faculty Member Award.

    rad@gatech.edu

    404-385-4273

    Office Location:
    CODA 0962B

    www.demillo.com

    University, College, and School/Department
    Research Focus Areas:
  • Cybersecurity Public Policy
  • Systems and Software Security
  • Threat Intelligence and Security Analytics
  • Additional Research:
    Algorithms; Computer Engineering; Architecture & Design; Data Security & Privacy; Encryption; Network Security; Software & Applications

    IRI Connections: