Ghassan AlRegib

Ghassan AlRegib

Ghassan AlRegib

John and Marilu McCarty Chair Professor
Center Director

Prof. AlRegib is currently the John and Marilu McCarty Chair Professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. His group is the Omni Lab for Intelligent Visual Engineering and Science (OLIVES) at Georgia Tech. In 2012, he was named the Director of Georgia Tech’s Center for Energy and Geo Processing (CeGP). He is the director of the Center for Signal and Information Processing (CSIP). He also served as the Director of Georgia Tech’s Initiatives and Programs in MENA between 2015 and 2018. He has authored and co-authored more than 300 articles in international journals and conference proceedings. He has been issued several U.S. patents and invention disclosures. He is a Fellow of the IEEE.

Prof. AlRegib received the ECE Outstanding Graduate Teaching Award in 2001 and both the CSIP Research and the CSIP Service Awards in 2003. In 2008, he received the ECE Outstanding Junior Faculty Member Award. In 2017, he received the 2017 Denning Faculty Award for Global Engagement. He and his students received the Beat Paper Award in ICIP 2019. He received the 2024 ECE Distinguished Faculty Achievement Award at Georgia Tech. He and his students received the Best Paper Award in ICIP 2019 and the 2023 EURASIP Best Paper Award for Image communication Journal.

Prof. AlRegib participated in a number of activities. He has served as Technical Program co-Chair for ICIP 2020 and ICIP 2024. He served two terms as a member of the IEEE SPS Technical Committees on Multimedia Signal Processing (MMSP) and Image, Video, and Multidimensional Signal Processing (IVMSP), 2015-2017 and 2018-2020. He was a member of the Editorial Boards of both the IEEE Transactions on Image Processing (TIP), 2009-2022, and the Elsevier Journal Signal Processing: Image Communications, 2014-2022. He was a member of the editorial board of the Wireless Networks Journal (WiNET), 2009-2016 and the IEEE Transaction on Circuits and Systems for Video Technology (CSVT), 2014-2016. He was an Area Chair for ICME 2016/17 and the Tutorial Chair for ICIP 2016. He served as the chair of the Special Sessions Program at ICIP’06, the area editor for Columns and Forums in the IEEE Signal Processing Magazine (SPM), 2009–12, the associate editor for IEEE SPM, 2007-09, the Tutorials co-chair in ICIP’09, a guest editor for IEEE J-STSP, 2012, a track chair in ICME’11, the co-chair of the IEEE MMTC Interest Group on 3D Rendering, Processing, and Communications, 2010-12, the chair of the Speech and Video Processing Track at Asilomar 2012, and the Technical Program co-Chair of IEEE GlobalSIP, 2014. He lead a team that organized the IEEE VIP Cup, 2017 and the 2023 IEEEE VIP Cup. He delivered short courses and several tutorials at international events such as BigData, NeurIPS, ICIP, ICME, CVPR, AAAI, and WACV.

In the Omni Lab for Intelligent Visual Engineering and Science (OLIVES), he and his group work on robust and interpretable machine learning algorithms, uncertainty and trust, and human in the loop algorithms. The group studies interventions into AI systems to enhance their trustworthiness. The group has demonstrated their work on a wide range of applications such as Autonomous Systems, Medical Imaging, and Subsurface Imaging. The group is interested in advancing the fundamentals as well as the deployment of such systems in real-world scenarios. His research group is working on projects related to machine learning, image and video processing, image and video understanding, subsurface imaging, perception in visual data processing, healthcare intelligence, and video analytics. The primary applications of the research span from Autonomous Vehicles to Portable AI-based Ophthalmology and Eye Exam and from Microscopic Imaging to Seismic Interpretation. The group was the first to introduce modern machine learning to seismic interpretation.

In 2024, and after more than three years of continuous work, he co-founded Georgia Tech’s AI Makerspace. The AI Makerspace is a resource for the entire campus community to access AI. Its purpose is to democratize access to AI. Together with his team, they are developing tools and services for the AI Makerspace via a VIP Team called AI Makerspace Nexus. In addition, he created two AI classes from scratch with innovative hands-on exercises using the AI Makerspace. One class is the ECE4252/8803 FunML class (Fundamentals of Machine Learning) where students learn the basics of Machine Learning as well as eight weeks of Deep learning both mathematically and using hands-on exercises on real-world data. The second class is a sophomore-level AI Foundations class (AI First) that teaches any student from any college the basics of AI such as data literacy, learning, decision, planning, and ethics using theory and hands-on exercises on the AI Makerspace. Prof. AlRegib wrote two textbooks for both classes.

Prof. AlRegib has provided services and consultation to several firms, companies, and international educational and R&D organizations. He has been a witness expert in a number of patents infringement cases and Inter Partes Review (IRP) cases.

alregib@gatech.edu

404-894-7005

Office Location:
Centergy-One Room 5224

Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Bioinformatics
  • Conventional Energy
  • Machine Learning
  • Additional Research:

    Machine learning, Trustworthy AI, Explainable AI (XAI), Robust Learning Systems, Multimodal Learning, Annotations Diversity in AI Systems


    IRI Connections:

    Cyrus Aidun

    Cyrus Aidun

    Cyrus Aidun

    Professor

    Dr. Aidun joined the Woodruff School as a Professor in 2003 after completion of a two-year period as program director at the National Science Foundation. He began at Tech in 1988 as an Assistant Professor at the Institute of Paper Science and Technology. Prior, he was a research Scientist at Battelle Research Laboratories, Postdoctoral Associate at Cornell University and Senior Research Consultant at the National Science Foundation's Supercomputer Center at Cornell. 

    Dr. Aidun's research is at the intersection between fundamentals of the physics of complex fluids/thermal transport and applications to engineering and biotransport. He has a diverse research portfolio in fluid mechanics, bioengineering, renewable bioproducts and decarbonization of industrial processes. 

    A major focus has been to understand the physics of blood cell transport and interaction with glycoproteins (e.g., vWF) with applications to cardiovascular diseases.

    cyrus.aidun@me.gatech.edu

    404-894-6645

    Office Location:
    Love Building, Room 320

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Conventional Energy
  • Molecular, Cellular and Tissue Biomechanics
  • Pulp Paper Packaging & Tissue
  • Sustainable Manufacturing
  • Additional Research:
    Computational analysis of cellular blood flow in the cardiovascular system with applications to platelet margination, thrombus formation, and platelet activation in artificial heart valves. Thermal Systems. Chemical Recovery; Papermaking.

    IRI Connections:

    Robert Butera

    Robert Butera

    Robert Butera

    Vice President for Research Operations
    Associate Dean for Research and Innovation, College of Engineering
    Professor

    rbutera@gatech.edu

    404-894-2935

    Office Location:
    UAW 3111

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Neuroscience
  • Additional Research:
    Neuromodulation of peripheral nerve activity Real-time control methods applied to electrophysiology measurements Autonomic modulation of visceral organs. Our laboratory combines engineering and neuroscience to tackle real-world problems. We utilize techniques including intracellular and extracellular electrophysiology, computational modeling, and real-time computing.

    IRI Connections:

    Blair Brettmann

    Blair Brettmann

    Blair Brettmann

    Assistant Professor, School of Chemical and Biomolecular Engineering and Material Science and Engineering
    RBI Co-Lead: Interface of polymer science and wood-based materials

    Blair Brettmann received her B.S. in chemical engineering at the University of Texas at Austin in 2007. She received her Master’s in chemical engineering practice from MIT in 2009 following internships at GlaxoSmithKline (Upper Merion, PA) and Mawana Sugar Works (Mawana, India). Blair received her Ph.D. in chemical engineering at MIT in 2012 working with the Novartis-MIT Center for Continuous Manufacturing under Professor Bernhardt Trout. Her research focused on solid-state characterization and application of pharmaceutical formulations prepared by electrospinning. Following her Ph.D., Brettmann worked as a research engineer for Saint-Gobain Ceramics and Plastics for two years. While at Saint-Gobain she worked on polymer-based wet coatings and dispersions for various applications, including window films, glass fiber mats and architectural fabrics. Later, Brettmann served as a postdoctoral researcher in the Institute for Molecular Engineering at the University of Chicago with Professor Matthew Tirrell. Currently, Brettmann is an assistant professor with joint appointments in chemical and biomolecular engineering and Materials Science and Engineering at Georgia Tech.

    blair.brettmann@mse.gatech.edu

    404.894.2535

    Office Location:
    MoSE 31100P

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biomaterials
  • Biorefining
  • Biotechnology
  • Drug Design, Development and Delivery
  • Pulp Paper Packaging & Tissue
  • Sustainable Manufacturing
  • Additional Research:
    Pharmaceuticals, polymer and fiber, printing technologies, polymers, nanocellulose applications, new materials, wet-end chemistry, manufacturing, biotechnology, cellulosic nanomaterials, chemistry, biomaterials, aerogels and hydrogels, coating, coatings and barriers, films and coatings

    IRI Connections:

    Edward Botchwey

    Edward Botchwey

    Edward Botchwey

    Professor, Wallace H. Coulter Department of Biomedical Engineering

    Edward Botchwey received a B.S. in mathematics from the University of Maryland at College Park in 1993 and both M.E. and Ph.D. degrees in materials science engineering and bioengineering from the University of Pennsylvania in 1998 and 2002 respectively. He was recruited to the faculty at Georgia Tech in 2012 from his previous position at the University of Virginia. His current position is associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. Botchwey is former Ph.D. fellow of the National GEM Consortium, a former postdoctoral fellow of the UNCF-Merk Science Initiative, and a recipient of the Presidential Early Career Awards for Scientists and Engineers from the National Institutes of Health. 

    Botchwey’s research focuses on the delivery of naturally occurring small molecules and synthetic derivatives for applications in tissue engineering and regenerative medicine. He is particularly interested in how transient control of immune response using bioactive lipids can be exploited to control trafficking of stem cells, enhance tissue vascularization, and resolve inflammation. Botchwey serves on the Board of Directors of the Biomedical Engineering Society (BMES) and serves as the secretary to the Biomedical Engineering Decade committee.

    Botchwey, his wife Nisha Botchwey (also a GT faculty member) and three children reside in east Atlanta in the Lake Claire neighborhood. Botchwey is also an avid cyclist and enjoys reading YA fantasy, behavioral neuroscience and Christian theology books in his personal time.

    edward.botchwey@bme.gatech.edu

    404.385.5058

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biomaterials
  • Chemical Biology
  • Regenerative Medicine
  • Additional Research:
    Biomaterials, cellular materials, in situ characterization, tissue engineering, tissue engineering and biomaterials, microvascular growth and remodeling, stem cell engineering.

    IRI Connections:

    Mark Borodovsky

    Mark Borodovsky

    Mark Borodovsky

    Regents' Professor
    Director, Center for Bioinformatics and Computational Genomics
    Senior Advisor in Bioinformatics, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention in Atlanta

    Dr. Borodovsky and his group develop machine learning algorithms for computational analysis of biological sequences: DNA, RNA and proteins. Our primary focus is on prediction of protein-coding genes and regulatory sites in genomic DNA. Probabilistic models play an important role in the algorithm framework, given the probabilistic nature of biological sequence evolution.

    borodovsky@gatech.edu

    404-894-8432

    Office Location:
    EBB 2105

    Website

  • GeneMark
  • Google Scholar

    Research Focus Areas:
  • Algorithms & Optimizations
  • Machine Learning
  • Systems Biology
  • Additional Research:

    Development and applicaton of new machine learning and pattern recognition methods in bioinformatics and biological systems. Development and applicaton of new machine learning and pattern recognition methods in bioinformatics and biological systems. Chromatin; Epigenetics; Bioinformatics


    IRI Connections:

    Andreas Bommarius

    Andreas Bommarius

    Andreas Bommarius

    Professor
    RBI Initiative Lead: A Renewables-based Economy from WOOD (ReWOOD)

    Andreas (Andy) S. Bommarius is a professor of Chemical and Biomolecular Engineering as well of Chemistry and Biochemistry at the Georgia Institute of Technology in Atlanta, GA.  He received his diploma in Chemistry in 1984 at the Technical University of Munich, Germany and his Chemical Engineering B.S. and Ph.D. degrees in 1982 and 1989 at MIT, Cambridge, MA.

    From 1990-2000, he led the Laboratory of Enzyme Catalysis at Degussa (now Evonik) in Wolfgang, Germany, where his work ranged from immobilizing homogenous catalysts in membrane reactors to large-scale cofactor-regenerated redox reactions to pharma intermediates.

    At Georgia Tech since 2000, his research interests cover green chemistry and biomolecular engineering, specifically biocatalyst development and protein stability studies.  His lab applies data-driven protein engineering to improve protein properties on catalysts ranging from ene and nitro reductases to cellobiohydrolases.  Bommarius has guided the repositioning of the curriculum towards Chemical and Biomolecular Engineering by developing new courses in Process Design, Biocatalysis and Metabolic Engineering, as well as Drug Design, Development, and Delivery (D4), an interdisciplinary course with Mark Prausnitz.

    Andy Bommarius in 2008 became a Fellow of the American Institute of Medical and Biological Engineering.  Since 2010, he is Director of the NSF-I/UCR Center for Pharmaceutical Development (CPD), a Center focusing on process development, drug substance and product stability, and novel analytical methods for the characterization of drug substances and excipients.

    andreas.bommarius@chbe.gatech.edu

    404-385-1334

    Office Location:
    EBB 5018

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Drug Design, Development and Delivery
  • Molecular Evolution
  • Pulp Paper Packaging & Tissue
  • Renewable Energy
  • Sustainable Manufacturing
  • Additional Research:
    Biomolecular engineering, especially biocatalysis, biotransformations, and biocatalyst stability. Biofuels. Enzymatic Processing; Biochemicals; Chip Activation.

    IRI Connections:

    Saad Bhamla

    Saad Bhamla

    Saad Bhamla

    Assistant Professor

    Saad Bhamla studies biomechanics across species to engineer knowledge and tools that inspire curiosity.

    Saad Bhamla is an assistant professor of biomolecular engineering at Georgia Tech. A self-proclaimed "tinkerer," his lab is a trove of discoveries and inventions that span biology, physics and engineering. His current projects include studying the hydrodynamics of insect urine, worm blob locomotion and ultra-low-cost devices for global health. His work has appeared in the New York Times, the Economist, CNN, Wired, NPR, the Wall Street Journal and more.

    Saad is a prolific inventor and his most notable inventions includes a 20-cent paper centrifuge, a 23-cent electroporator, and the 96-cent hearing aid. Saad's work is recognised by numerous awards including a NIH R35 Outstanding Investigator Award, NSF CAREER Award, CTL/BP Junior Faculty Teaching Excellence Award, and INDEX: Design to Improve Life Award. Saad is also a National Geographic Explorer and a TED speaker. Newsweek recognized Saad as 1 of 10 Innovators disrupting healthcare.

    Saad is a co-founder of Piezo Therapeutics.

    Outside of the lab, Saad loves to go hiking with his partner and two dogs (Ollie and Bella).

    saadb@chbe.gatech.edu

    404-894-2856

    Office Location:
    ES&T L1224

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biomaterials
  • Biorefining
  • Biotechnology
  • Molecular, Cellular and Tissue Biomechanics
  • Pulp Paper Packaging & Tissue
  • Sustainable Manufacturing
  • Additional Research:
    Biotechnology; Complex Systems; Materials and Nanotechnology. The Bhamla Lab explores fundamental and applied research questions through the development of new experimental tools and techniques at the intersection of soft matter, organismic physics and global health. Ultra-fast Organismic Physics Biologists are just starting to systematically examine ultrafast motion across species (jellyfish, mantis shrimp, trap-jaw ants), some of which achieve accelerations exceeding a million g-forces in nanoseconds. At the single-cell level, the physical biology of ultra-fast motility remains poorly understood. What is the fastest motion a single cell can achieve? How do single-cell organisms amplify power and survive repeated high accelerations? These fundamental questions guide our exploration of several non-model unicellular and multicellular organisms to uncover the principles of extreme motility at cellular scales. Biological Soft Matter Our bodies are composed almost entirely of soft, wet, squishy materials. How do the fundamental principles of soft matter and complex fluids enable us to grasp dynamic processes, from the self-assembly of proteins to the stretching of a spider web? We study a spectrum of biological soft matter, from the tears on our eyes to biological foams from insects, with the goal of connecting the microscale structures (lipids, proteins) to their consequences for macroscale biological function (contact lens-eye interaction, microbiome health). As engineers, we leverage this understanding for human-health applications, ranging from diagnostics and monitoring to artificial therapeutic replacements and biomedical devices. Frugal Science and GlobalHealth Today, although information is free to anyone with internet, access to scientific tools and healthcare devices still has many barriers. How do we design and build tools that are scientifically rigorous, but cost a few cents on the dollar? Driven by the spirit of doing “frugal science”, we box ourselves in to find out of the box solutions for global challenges in science education, agriculture, and healthcare. Projects in this area include field-work, science outreach, and citizen-science initiatives. Disciplines: Biotechnology Complex Systems Materials and Nanotechnology

    IRI Connections:

    Stephen Balakirsky

    Stephen Balakirsky

    Stephen Balakirsky

    Regents' Researcher; Georgia Tech Research Institute
    Director of Technical Initiatives; IBB
    Chief Scientist | Aerospace, Transportation & Advanced Systems Laboratory (ATAS); GTRI

    Stephen Balakirsky is the Chief Scientist for the Aerospace, Transportation & Advanced Systems Laboratory at the Georgia Tech Research Institute (GTRI), and the Director of Technical Initiatives at the Petit Institute for Bioengineering and Bioscience (IBB) at Georgia Tech.

    Balakirsky’s research interests include robotic architectures, planning, bio-automation, robotic standards, and autonomous systems testing. His work in knowledge driven robotics couples real-time sensors and knowledge repositories to allow for flexibility and agility in robotic systems ranging from assembly and manufacturing systems to surveillance and logistics systems. The framework promotes software reuse and the ability to detect and correct for execution errors.

    Previously, Balakirsky worked as a project manager at the National Institute of Standards and Technology (NIST) and was a senior research engineer at the Army Research Laboratory (ARL). At ARL, Balakirsky performed mobile robotics research in several areas, including command and control, mapping, human-computer interfaces, target tracking, vision processing and tele-operated control.

    stephen.balakirsky@gtri.gatech.edu

    404.407.8547

    Office Location:
    Food Processing Technology Building, 640 Strong St, Atlanta, GA 30318

    Google Scholar

    Research Focus Areas:
  • Collaborative Robotics
  • Additional Research:

    Robotics; Planning; Knowledge Representation; Ontologies


    IRI Connections:

    Sam Brown

    Sam Brown

    Sam Brown

    Professor

    Sam Brown's lab studies the multi-scale dynamics of infectious disease. Their goal is to improve the treatment and control of infectious diseases through a multi-scale understanding of microbial interactions. Their approach is highly interdisciplinary, combining theory and experiment, evolution, ecology and molecular microbiology in order to understand and control the multi-scale dynamics of bacteria pathogens.

    sam.brown@biology.gatech.edu

    Office Location:
    ES&T 2244

    Website

  • http://biosci.gatech.edu/people/sam-brown
  • Google Scholar

    Research Focus Areas:
  • Drug Design, Development and Delivery
  • Molecular Evolution
  • Systems Biology
  • Additional Research:
    Evolutionary microbiology, bacterial social life, virulence and drug resistance

    IRI Connections: