Blair Brettmann

Blair Brettmann

Blair Brettmann

Assistant Professor, School of Chemical and Biomolecular Engineering and Material Science and Engineering
RBI Co-Lead: Interface of polymer science and wood-based materials

Blair Brettmann received her B.S. in chemical engineering at the University of Texas at Austin in 2007. She received her Master’s in chemical engineering practice from MIT in 2009 following internships at GlaxoSmithKline (Upper Merion, PA) and Mawana Sugar Works (Mawana, India). Blair received her Ph.D. in chemical engineering at MIT in 2012 working with the Novartis-MIT Center for Continuous Manufacturing under Professor Bernhardt Trout. Her research focused on solid-state characterization and application of pharmaceutical formulations prepared by electrospinning. Following her Ph.D., Brettmann worked as a research engineer for Saint-Gobain Ceramics and Plastics for two years. While at Saint-Gobain she worked on polymer-based wet coatings and dispersions for various applications, including window films, glass fiber mats and architectural fabrics. Later, Brettmann served as a postdoctoral researcher in the Institute for Molecular Engineering at the University of Chicago with Professor Matthew Tirrell. Currently, Brettmann is an assistant professor with joint appointments in chemical and biomolecular engineering and Materials Science and Engineering at Georgia Tech.

blair.brettmann@mse.gatech.edu

404.894.2535

Office Location:
MoSE 31100P

Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biomaterials
  • Biorefining
  • Biotechnology
  • Drug Design, Development and Delivery
  • Pulp Paper Packaging & Tissue
  • Sustainable Manufacturing
  • Additional Research:
    Pharmaceuticals, polymer and fiber, printing technologies, polymers, nanocellulose applications, new materials, wet-end chemistry, manufacturing, biotechnology, cellulosic nanomaterials, chemistry, biomaterials, aerogels and hydrogels, coating, coatings and barriers, films and coatings

    IRI Connections:

    Andreas Bommarius

    Andreas Bommarius

    Andreas Bommarius

    Professor
    RBI Initiative Lead: A Renewables-based Economy from WOOD (ReWOOD)

    Andreas (Andy) S. Bommarius is a professor of Chemical and Biomolecular Engineering as well of Chemistry and Biochemistry at the Georgia Institute of Technology in Atlanta, GA.  He received his diploma in Chemistry in 1984 at the Technical University of Munich, Germany and his Chemical Engineering B.S. and Ph.D. degrees in 1982 and 1989 at MIT, Cambridge, MA.

    From 1990-2000, he led the Laboratory of Enzyme Catalysis at Degussa (now Evonik) in Wolfgang, Germany, where his work ranged from immobilizing homogenous catalysts in membrane reactors to large-scale cofactor-regenerated redox reactions to pharma intermediates.

    At Georgia Tech since 2000, his research interests cover green chemistry and biomolecular engineering, specifically biocatalyst development and protein stability studies.  His lab applies data-driven protein engineering to improve protein properties on catalysts ranging from ene and nitro reductases to cellobiohydrolases.  Bommarius has guided the repositioning of the curriculum towards Chemical and Biomolecular Engineering by developing new courses in Process Design, Biocatalysis and Metabolic Engineering, as well as Drug Design, Development, and Delivery (D4), an interdisciplinary course with Mark Prausnitz.

    Andy Bommarius in 2008 became a Fellow of the American Institute of Medical and Biological Engineering.  Since 2010, he is Director of the NSF-I/UCR Center for Pharmaceutical Development (CPD), a Center focusing on process development, drug substance and product stability, and novel analytical methods for the characterization of drug substances and excipients.

    andreas.bommarius@chbe.gatech.edu

    404-385-1334

    Office Location:
    EBB 5018

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Drug Design, Development and Delivery
  • Molecular Evolution
  • Pulp Paper Packaging & Tissue
  • Renewable Energy
  • Sustainable Manufacturing
  • Additional Research:
    Biomolecular engineering, especially biocatalysis, biotransformations, and biocatalyst stability. Biofuels. Enzymatic Processing; Biochemicals; Chip Activation.

    IRI Connections:

    Zhaohui (Julene) Tong

    Zhaohui (Julene) Tong

    Zhaohui (Julene) Tong

    Associate Professor
    RBI Lead: Waste Valorization in Food-Energy-Water

    The Tong Lab tackles challenges in the interdisciplinary areas of bioresource engineering and sustainable chemistry. We develop innovative technologies for producing chemicals, materials, energy, and fuels from renewable resources.

    Current research interests include:

    • Functional biomaterials for high-efficiency circular economy
    • Platform chemicals and hydrocarbon fuels from renewable resources
    • Sustainable process control and modeling
    • Nano-biomaterial synthesis and self-assembling
    • Polymer degradation and recycling

    Disciplines:

    • Materials and Nanotechnology

    • Energy and Sustainability

    zt7@gatech.edu

    404.894.3098

    Office Location:
    ES&T 2226

    Website

    Research Focus Areas:
  • Biochemicals
  • Biorefining
  • Energy
  • Materials and Nanotechnology
  • Pulp & Paper Manufacturing
  • Sustainable Engineering
  • Sustainable Manufacturing

  • IRI Connections:

    J. Carson Meredith

    J. Carson Meredith

    J. Carson Meredith

    Executive Director of the Renewable Bioproducts Institute
    Professor and James Harris Faculty Fellow, School of Chemical and Biomolecular Engineering

    Meredith is the Executive Director of the Georgia Tech Renewable Bioproducts Institute, and the James Harris Faculty Fellow in ChBE.

    Meredith's group researches the surfaces and interfaces of advanced materials. Their work aims to apply fundamentals of polymer, surface and colloid science to find new ways to engineer materials useful to society and industry. In particular, projects emphasize the utilization of renewable components and sustainable processing to achieve circular manufacturing and use of plastics, composites, foams and coatings, among others. Many of these materials are critical for food security, energy efficiency, and are closely connected to greenhouse gas reduction.

    carson.meredith@chbe.gatech.edu

    404.385.2151

    Office Location:
    ES&T 1212

    ChBE Profile Page

  • The Meredith Group
  • Renewable Bioproducts Institute
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Materials and Nanotechnology
  • Pulp Paper Packaging & Tissue
  • Sustainable Manufacturing
  • Additional Research:

    Catalysis; Cellulosic Nanomaterials; Separation Technologies; Nanocellulose Applications; Aerogels & Hydrogels; Films & Coatings; Coatings & Barriers; Biomaterials


    IRI Connections:

    Valerie Thomas

    Valerie Thomas

    Valerie Thomas

    Anderson-Interface Chair of Natural Systems
    Professor
    RBI Initiative Lead: Sustainability Analysis

    Valerie Thomas is the Anderson-Interface Chair of Natural Systems and Professor in the H. Milton School of Industrial and Systems Engineering, with a joint appointment in the School of Public Policy. 

    Dr. Thomas's research interests are energy and materials efficiency, sustainability, industrial ecology, technology assessment, international security, and science and technology policy. Current research projects include low carbon transportation fuels, carbon capture, building construction, and electricity system development. Dr. Thomas is a Fellow of the American Association for the Advancement of Science, and of the American Physical Society. She has been an American Physical Society Congressional Science Fellow, a Member of the U.S. EPA Science Advisory Board, and a Member of the USDA/DOE Biomass Research and Development Technical Advisory Committee. 

    She has worked at Princeton University in the Princeton Environmental Institute and in the Center for Energy and Environmental Studies, and at Carnegie Mellon University in the Department of Engineering and Public Policy.

    Dr. Thomas received a B. A. in physics from Swarthmore College and a Ph.D. in theoretical physics from Cornell University.

    valerie.thomas@isye.gatech.edu

    (404) 894-0390

    ISyE Profile

  • Website
  • Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Gigatechnology
  • Hydrogen Storage & Transport
  • Hydrogen Utilization
  • Pulp Paper Packaging & Tissue
  • Renewable Energy
  • Social & Environmental Impacts
  • Sustainable Engineering
  • Sustainable Manufacturing
  • Use & Conservation
  • Additional Research:
    Hydrogen Transport/Storage; Biofuels; ClIMaTe/Environment; Electric Vehicles; System Design & Optimization; Energy and Materials Efficiency; Sustainability; Industrial Ecology; Technology Assessment; Science and Technology Policy

    IRI Connections:

    Carsten Sievers

    Carsten Sievers

    Carsten Sievers

    Professor, School of Chemical and Biomolecular Engineering
    RBI Initiative Lead: Maximizing the Value of Products from Plastics Upcycling

    Sievers’ research interests are in heterogeneous catalysis, reactor design, applied spectroscopy, and characterization and synthesis of solid materials. Combining these interests he seeks to develop processes for the production of fuels and chemicals. His research program combines fundamental and applied research.

    In fundamental studies, a suite of analytical and spectroscopic techniques (e.g. IR, NMR) is used to gain knowledge on structure-reactivity relationships of heterogeneous catalysts. Moreover, surface reactions are studied on a molecular level to identify reaction pathways over different catalysts. Information obtained from these studies provides the foundation for designing innovative catalysts.

    Applied studies focus specific catalytic processes. For these projects, continuously operated flow reactor systems are designed. Different catalysts are tested for reactivity, selectivity and stability and the influence of the operating conditions is investigated. Catalyst deactivation is studied in detail to develop suitable regeneration methods or to avoid deactivation entirely by improved catalyst design. Specific projects include hydrodeoxygenation of pyrolysis oils, selective hydration of polyols, conversion of sugars into lactic acid and ethylene glycol, and selective oxidation of methane.

    An important goal of Sievers’ research is to enable technology for utilization of alternative resources in order to reduce the current dependence of oil. Among these biomass is a particularly promising candidate because it is renewable and can be produced CO2 neutral.

    Sievers has contributed to 80 peer reviewed publications on heterogeneous catalysis in petroleum refining (isobutane/2-butene alkylation, fluid catalytic cracking, hydrotreating), alkane activation, supported ionic liquid as catalysts for fine chemical synthesis, and biomass processing.  He is Director and Past President of the Southeastern Catalysis Society, former Program Chair and Director of the ACS Division of Catalysis Technology & Engineering, former Director of the AIChE Division of Catalysis and Reaction Engineering, and Editor of Applied Catalysis A: General.

    carsten.sievers@chbe.gatech.edu

    404.385.7685

    Office Location:
    ES&T 2218

    ChBE Profile Page

  • Sievers Research Group
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Fuels & Chemical Processing
  • Hydrogen Production
  • Materials for Energy
  • Pulp Paper Packaging & Tissue
  • Sustainable Manufacturing
  • Additional Research:
    Biomass; Biofuels; Catalysis; Advanced Characterization; Gasification; Biorefining; Lignin Upgrading; Catalysis; Energy & Water; Separation Technologies; Chemical Feedstocks; Sugars; Lignin & Hemicellulose

    IRI Connections:

    Matthew Realff

    Matthew Realff

    Matthew Realff

    Professor
    David Wang Sr. Fellow
    Associate Director, RBI
    SEI Lead: Circular Carbon Economy; RBI Lead: Next Generation Refinery

    Dr. Realff’s broad research interests are in the areas of process design, simulation, and scheduling. His current research is focused on the design and operation of processes that minimize waste production by recovery of useful products from waste streams, and the design of processes based on biomass inputs. In particular, he is interested in carbon capture processes both from flue gas and dilute capture from air as well as the analysis and design of processes that use biomass.

    matthew.realff@chbe.gatech.edu

    (404) 894-1834

    Departmental Bio

  • 2023 Initiative Lead Profile
  • Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Fuels & Chemical Processing
  • Pulp Paper Packaging & Tissue
  • Renewable Energy
  • Sustainable Manufacturing
  • Use & Conservation
  • Additional Research:
    Biofuels; Carbon Capture; Separations Technology; System Design & Optimization; SMART Manufacturing; Energy & Water; Separation Technologies; Biochemicals; Chemical Feedstocks; Sugars; Lignin & Hemicellulose; Biofuels

    IRI Connections:

    Will Gutekunst

    Will Gutekunst

    Will Gutekunst

    Associate Professor
    RBI Co-Lead: Interface of polymer science and wood-based materials

    The Gutekunst Lab is interested in pushing the limits of complexity in macromolecular systems using innovative concepts from synthetic organic chemistry. 

    Specific projects in the lab will explore the design of novel monomers for the construction of functional polyamides, the development of small molecule reagents for the dynamic modulation of branched polymer architectures, and the investigation of new concepts for creating covalent bonds in challenging contexts. Each of these research projects will enable the generation of new functional materials with structures or assemblies that were previously inaccessible for study. 

    Prospective students will obtain extensive training in synthetic organic chemistry, as well as polymer synthesis and characterization.

    willgute@gatech.edu

    404-894-4675

    Office Location:
    MoSE 1100Q

    Website

  • Chemistry Profile
  • Google Scholar

    Research Focus Areas:
  • Biobased Materials
  • Biochemicals
  • Biorefining
  • Biotechnology
  • Pulp Paper Packaging & Tissue
  • Sustainable Manufacturing

  • IRI Connections: