Erik Dreaden

Erik Dreaden

Erik Dreaden

Assistant Professor

Erik C. Dreaden joined the Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University in 2017. Dr. Dreaden also holds a joint faculty appointment in the Department of Pediatrics at the Emory University School of Medicine where he collaborates with researchers at Children's Healthcare of Atlanta and the Aflac Center for Cancer and Blood Disorders. Dr. Dreaden's research seeks to apply principles of molecular and nanoscale engineering to improve the therapeutic potential of drug combinations, vaccines, and immunotherapies directed against pediatric and adult cancers. 

Prior to joining Emory and Georgia Tech, Dr. Dreaden was a postdoctoral fellow at the Koch Institute for Integrative Cancer Research at MIT, where his research focused on the development of polymer-based technologies for nucleic acid and rational combination cancer therapies. 

Dr. Dreaden is a member of the Cancer Immunology Research Program at the Winship Cancer Institute of Emory University. He also holds memberships in the Biomedical Engineering Society, American Institute of Chemical Engineers, American Association of Cancer Research, Materials Research Society, American Association for the Advancement of Science, and American Chemical Society.

e.dreaden@gatech.edu

404-778-3033

Office Location:
Emory HSRB E108

Website

  • Releated Site
  • Google Scholar

    Research Focus Areas:
  • Biomaterials
  • Cancer Biology
  • Chemical Biology
  • Drug Design, Development and Delivery
  • Additional Research:
    "The Dreaden Lab uses molecular engineering to impart augmented, amplified, or non-natural function to tumor therapies and immunotherapies. The overall goal of our research is to engineer molecular and nanoscale tools that can (i) improve our understanding of fundamental tumor biology and (ii) simultaneously serve as cancer therapies that are more tissue-exclusive and patient-personalized. The lab currently focuses on three main application areas: optically-triggered immunotherapies, combination therapies for pediatric cancers, and nanoscale cancer vaccines. Our work aims to translate these technologies into the clinic and beyond. Molecular Engineering, Tumor Immunity, Nanotechnology, Pediatric Cancer"

    IRI Connections:

    Michael Davis

    Michael Davis

    Michael Davis

    Professor
    Associate Chair for Graduate Studies
    Director, Children's Heart Research and Outcomes (HeRO) Center

    Dr. Davis holds positions as a Professor in both Cardiology and Biomedical Engineering at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. Additionally, he serves as an associate chair for graduate studies at BME department, and a director of the Children's Heart Research and Outcomes (HeRO) Center. He received his Ph.D. in Molecular and Systems Pharmacology at Emory University in 2003 working on molecular regulation of eNOS expression by shear stress. From 2003-2006, he completed his postdoctoral fellowship at Brigham and Women's Hospital working on cardiac tissue engineering with collaborators at the Massachusetts Institute of Technology. He moved back to Emory in 2006 to join the faculty in Division of Cardiology and Biomedical Engineering Department.

    michael.davis@bme.gatech.edu

    404-727-9858

    Office Location:
    Emory HSRB W486

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biomaterials
  • Regenerative Medicine
  • Additional Research:
    "Cardiac Regeneration, stem cell therapy: Our laboratory focuses on various aspects of cardiac regeneration and preservation using molecular-based and biomaterials-based approaches to restoring function after cardiac injury."

    IRI Connections:

    Lakshmi Dasi

    Lakshmi Dasi

    Lakshmi Dasi

    Rozelle Vanda Wesley Professor

    Lakshmi Prasad Dasi is an established researcher in the field of prosthetic heart valves, cardiovascular biomechanics, biomaterials, and devices. He is currently a tenure Professor of Biomedical Engineering, at Georgia Institute of Technology while holding the Rozelle Vanda Wesley Endowed Professorship as well as being the Associate Chair for Undergraduate Studies. He has held positions at The Ohio State University, and Colorado State University previously. He is a Fellow of the American College of Cardiology (FACC) as well as Fellow of the American Institute for Medical and Biological Engineering (FAIMBE). 

    Dasi earned his Ph.D. from Georgia Institute of Technology in 2004 with a focus in fluid dynamics and turbulence. He trained as a postdoctoral fellow and research engineer under Prof. Ajit Yoganathan’s mentorship at Georgia Tech where he transformed his research focus to heart valves, devices, and cardiovascular biomechanics. In 2009, he established the Cardiovascular Biofluid Mechanics Lab (CBFL) as Assistant Professor at Colorado State University and moved to The Ohio State University in 2015 as his focus became more translational. Since 2020, his research at Georgia Tech focuses on tackling the complexity of: (a) heart valve biomechanics (native and prosthetic); (b) prosthetic heart valve engineering (conventional & trans-catheter); (c) structure-function relationships of the heart in health and disease at the embryonic, pediatric, as well as adult stages; and (d) turbulence and turbulent blood flow.

    lakshmi.dasi@gatech.edu

    404.385.1265

    Office Location:
    TEP 237

    Related Site

  • Cardiovascular Fluid Mechanics (CFM) Laboratory
  • Google Scholar

    Research Focus Areas:
  • Biomaterials
  • Regenerative Medicine

  • IRI Connections:

    Scott Hollister

    Scott Hollister

    Scott Hollister

    Professor and Patsy and Alan Dorris Chair in Pediatric Technology

    I am the Patsy and Alan Dorris Chair of Pediatric Technology and Professor of Biomedical Engineering at the Georgia Institute of Technology. I also direct the Center for 3D Medical Fabrication (3DMedFab) and the Tissue Engineering and Mechanics Laboratory at Georgia Tech. We develop a range of 3D printed medical devices. We have over 25 devices implanted in patients for treatment of trachecobronchomalacia.

    scott.hollister@bme.gatech.edu

    404-385-5506

    Office Location:
    UAW 2102

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biomaterials
  • Molecular, Cellular and Tissue Biomechanics
  • Additional Research:
    My research interests focus on image-based computational design and 3D biomaterial printing for patient specific devices and regenerative medicine, with specific interests in pediatric applications.Clinical application interests include airway reconstruction and tissue engineering, structural heart defects, craniofacial and facial plastics, orthopaedics, and gastrointestinal reconstruction.We specifically utilize patient image data as a foundation to for multiscale design of devices, reconstructive implants and regenerative medicine porous scaffolds.We are also interested in multiscale computational simulation of how devices and implants mechanically interact with patient designs, combining these simulations with experimental measures of tissue mechanics.We then transfer these designs to both laser sintering and nozzle based platforms to build devices from a wide range of biomaterials. Subsequently, we are interested in combining these 3D printed biomaterial platforms with biologics for patient specific regenerative medicine solutions to tissue reconstruction. 

    IRI Connections:

    Emily Sanders

    Emily Sanders

    Emily Sanders

    Assistant Professor

    Dr. Emily D. Sanders is an Assistant Professor in the Woodruff School of Mechanical Engineering at Georgia Tech. She obtained her Ph.D. at Georgia Tech in 2021, where she developed new topology optimization methods for design of tension-only cable nets, elastostatic cloaking devices, and multiscale structures and components. Dr. Sanders hold a bachelor’s degree from Bucknell University and a master’s degree from Stanford University.

    emily.sanders@me.gatech.edu

    Research Focus Areas:
  • Additive manufacturing
  • Advanced Manufacturing
  • Algorithms & Optimizations
  • Architecture & Design

  • IRI Connections:

    Chethan Pandarinath

    Chethan Pandarinath

    Chethan Pandarinath

    Adjunct Assistant Professor

    Our work centers on understanding how the brain represents information and intention, and using this knowledge to develop high-performance, robust, and practical assistive devices for people with disabilities and neurological disorders. We take a dynamical systems approach to characterizing the activity of large populations of neurons, combined with rigorous systems engineering (signal processing, machine learning, and real-time systems) to advance the performance of brain-machine interfaces and neuromodulatory devices.

    chethan@gatech.edu

    404-727-2851

    Office Location:
    Emory WMRB 6001

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Artificial Intelligence (AI)
  • Neuroscience
  • Additional Research:

    Our work centers on understanding how the brain represents information and intention, and using this knowledge to develop high-performance, robust, and practical assistive devices for people with disabilities and neurological disorders. We take a dynamical systems approach to characterizing the activity of large populations of neurons, combined with rigorous systems engineering (signal processing, machine learning, control theory, real-time system design) to advance the performance of brain-machine interfaces and neuromodulatory devices.


    IRI Connections:

    Paul Benkeser

    Paul Benkeser

    Paul Benkeser

    Professor
    Senior Associate Chair

    Paul Benkeser is a professor and senior associate chair in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. A member of the Georgia Tech faculty since 1985, he was one of the founding faculty of the Coulter Department in 1998 and served as its first associate chair for undergraduate studies.    

    His early research interests were in therapeutic and diagnostic applications of ultrasound. After joining the Coulter Department he redirected his energies toward enhancing undergraduate biomedical engineering  education, with particular interests in integrating problem-driven learning and global experiential learning opportunities in the curriculum. His research and education endeavors have been funded by grants from NIH, NSF, the Department of Veterans Affairs, and the Whitaker Foundation.    

    Dr. Benkeser has been active in engineering accreditation activities for ABET since 2002, serving in a number of capacities including program evaluator, EAC Commissioner, and member of its board of delegates. He is a member of the American Institute for Medical and Biological Engineering, Biomedical Engineering Society, and American Society for Engineering Education, and a senior member of the Institute of Electrical and Electronics Engineers.    

    He received his BS from Purdue University and MS and PhD from the University of Illinois at Urbana-Champaign, all in electrical engineering.

    pbenkeser@gatech.edu

    404-894-2912

    Office Location:
    UAW 2125

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Cancer Biology
  • Regenerative Medicine
  • Additional Research:
    Ultrasonic bioengineering, biomedical signal and image processing, and biomedical engineering education.

    IRI Connections:

    Devesh Ranjan

    Devesh Ranjan

    Devesh Ranjan

    Chair, Mechanical Engineering

    Devesh Ranjan was named the Eugene C. Gwaltney, Jr. School Chair in the Woodruff School of Mechanical Engineering at Georgia Tech and took over the role on January 1, 2022. He previously served as the Associate Chair for Research, and Ring Family Chair in the Woodruff School. He also holds a courtesy appointment in the Daniel Guggenheim School of Aerospace Engineering and serves as a co-director of the $100M Department of Defense-funded University Consortium for Applied Hypersonics (UCAH). At Georgia Tech, Ranjan has held several leadership positions including chairing ME’s Fluid Mechanics Research Area Group (2017 - 2018), serving as ME’s Associate Chair for Research (2019-present), and as co-chair of the “Hypersonics as a System” task-force, and serving as Interim Vice-President for Interdisciplinary Research (Feb 2021-June 2021). 

    Ranjan joined the faculty at Georgia Tech in 2014. Before coming to Georgia Tech, he was a director’s research fellow at Los Alamos National Laboratory (2008) and Morris E. Foster Assistant Professor in the Mechanical Engineering department at Texas A&M University (2009-2014). He earned a bachelor's degree from the NIT-Trichy (India) in 2003, and master's and Ph.D. degrees from the UW-Madison in 2005 and 2007 respectively, all in mechanical engineering. 

    Ranjan’s research focuses on the interdisciplinary area of power conversion, complex fluid flows involving shock and hydrodynamic instabilities, and the turbulent mixing of materials in extreme conditions, such as supersonic and hypersonic flows. Ranjan is a Fellow of the American Society of Mechanical Engineers (ASME), and has received numerous awards for his scientific contributions, including the DOE-Early Career Award (first GT recipient), the NSF CAREER Award, and the US AFOSR Young Investigator award. He was also named the J. Erskine Love Jr. Faculty Fellow in 2015. He was invited to participate in the National Academy of Engineering’s 2016 US Frontiers in Engineering Symposium. For his educational efforts and mentorship activity, he has received CATERPILLAR Teaching Excellence Award from College of Engineering at Texas A&M, as well as 2013 TAMU ASME Professor Mentorship Award from TAMU student chapter of the ASME. At Georgia Tech, Ranjan served as a Provost’s Teaching and Learning Fellow (PTLF) from 2018-2020, and was named 2021 Governor’s Teaching Fellow. He was also named Diversity, Equity and Inclusion (DEI) Fellow for 2020-21. 

    Ranjan is currently part of a 10-member Technical Screening Committee of the NAE’s COVID-19 Call for Engineering Action taskforce, an initiative to help fight the coronavirus pandemic. He currently serves on the Editorial Board of Shock Waves and was a former Associate Editor for the ASME Journal of Fluids Engineering.

    devesh.ranjan@me.gatech.edu

    (404) 385-2922

    Website

    Research Focus Areas:
  • Energy Generation, Storage, and Distribution
  • Nuclear
  • Thermal Systems
  • Additional Research:
    Nuclear; Thermal Systems

    IRI Connections:

    Julia Babensee

    Julia Babensee

    Julia Babensee

    Associate Professor

    Julia Babensee is an Associate Professor in the Walter H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. Dr. Babensee is affiliated with the Petit Institute for Bioengineering and Bioscience and the Georgia Tech/Emory Center for the Engineering of Living Tissue. 

    Dr. Babensee is a member of the Cell and Molecular Biology Research Program at Winship Cancer Institute. She is also a permanent member of the NIH Bioengineering, Technology and Surgical Sciences study section. She is actively involved in several professional societies with service including SFB Member-at-Large (2008-2009) and Program Chair for the 2012 Annual Meeting of the Biomedical Engineering Society in Atlanta, Georgia. 

    Her research program is in the area of engineering of inflammatory and immune responses focused on understanding host responses to combination products. Her research interests also include: Biomaterial interactions with dendritic cells, tissue engineering for rheumatoid arthritis, and biomaterial-applied immunology.

    Babensee received her Ph.D. from University of Toronto in Toronto, Canada. She completed her postdoctoral fellowship at Rice University and Baylor College of Medicine.

    julia.babensee@bme.gatech.edu

    404-385-0130

    Office Location:
    Petit Biotechnology Building, Office 1315

    Website

  • Related Site
  • Google Scholar

    Research Focus Areas:
  • Biomaterials
  • Chemical Biology
  • Drug Design, Development and Delivery
  • Regenerative Medicine
  • Additional Research:

    Host responses to combination products, biomaterial interactions with dendritic cells, tissue engineering for rheumatoid arthritis, targeted DNA vaccine delivery, and biomaterial-applied immunology.


    IRI Connections: