In search of invariance in brains and machines

Bruno Olshausen
Helen Wills Neuroscience Institute, School of Optometry
Redwood Center for Theoretical Neuroscience
UC Berkeley

How do we see these things as the same?

Shepard \& Metzler (1971)

The image of a single object has 9 factors of variation:

- 3D position (3)
- 3D rotation (3)
- Photometric (3)

Assuming 100 distinct states for each yields $100^{9}=10^{18}$ variations.

The invariant representations produced by deep convnets have a high false-positive rate

easily fooled

brittle

Jacobsen, J. H., Behrmann, J., Zemel, R., \& Bethge, M. (2018). Excessive invariance causes adversarial vulnerability. arXiv:1811.00401.

What is vision for? How did it evolve?

Vision in jumping spiders

(Bair \& Olshausen, 1991)

Orientation by Jumping Spiders During the Pursuit of Prey

(D.E. Hill, 1979)

Path integration in desert ants

(R. Wehner, S. Wehner, 1986)

Navigation in fruit flies

Head-direction cells in ellipsoid body of Drosophila

 (Seelig \& Jayaraman 2015)

Ellipsoid body activity (calcium imaging

Decoded vs. actual head dir.

semicircular canals

Perception of 3D shape from motion

Randomized dot motion

Our ability to see these as the same stems from our ability to infer the transformation between them.

How to compute transformations? How does the brain do it?

Remapping via multiplicative gating

BULLETIN OF
MATHEMATICAL BIOPHYSICS
vOLUME 9,1947

HOW WE KNOW UNIVERSALS
THE PERCEPTION OF AUDITORY AND VISUAL FORMS

Walter Pitts

John Simon Guggenheim Fellow for 1947
AND
Warren S. McCulloch
Department of Psychiatry, University of Illinois College of Medicine at the Illinois Neuropsychiatric Institute, Chicago

Geoffrey E. Hinton and Kevin J. Lang

Computer Science Department
Carnegie-Mellon University
Pittsburgh PA 15213

SHAPE RECOGNITION AND ILLUSORY CONJUNCTIONS

Bilinear models for factorizing 'form' and 'motion'

$$
I(x)=\sum_{x^{\prime}} T\left(x, x^{\prime}\right) I_{0}\left(x^{\prime}\right)
$$

$$
\begin{aligned}
T\left(x, x^{\prime}\right) & =\sum_{k} c_{k} \Psi_{k}\left(x, x^{\prime}\right) & & \text { transformation } \\
I_{0}(x) & =\sum_{i} a_{i} \phi_{i}(x) & & \text { shape }
\end{aligned}
$$

$$
=\sum_{x^{\prime}} \sum_{k} c_{k} \Psi_{k}\left(x, x^{\prime}\right) \sum_{i} a_{i} \phi_{i}\left(x^{\prime}\right)
$$

$$
=\sum_{i, k \uparrow \uparrow} a_{i} c_{k} B_{i k}(x) \quad B_{i k}(x)=\sum_{x^{\prime}} \Psi_{k}\left(x, x^{\prime}\right) \phi_{i}\left(x^{\prime}\right)
$$

shape transformation

Pitts \& McCulloch (1947) - neural remapping circuits
Hinton (1981; 1985; 2011; 2017) - remapping frames of reference
Anderson \& Van Essen (1987) - 'shifter circuits'
Olshausen, Anderson \& Van Essen (1993) - dynamic routing
Tenenbaum \& Freeman (2000) - separation of content and style
Arathorn (2002) - Map seeking circuits
Grimes \& Rao (2005) - bilinear sparse coding
Memisevic \& Hinton (2010) - higher-order Boltzmann machines

$\sim g\left(\sum_{i} w_{i} \Pi_{j \in G_{i}} x_{j}\right)$

Lie groups for modeling continuous transformations

$$
\begin{aligned}
\mathbf{I}_{s} & =\mathbf{T}(s) \mathbf{I}_{0} \\
& =e^{\mathbf{A} s} \mathbf{I}_{0}
\end{aligned}
$$

Zhang (1996) - head direction cells
Rao \& Ruderman (1999) - learning translation and rotation
Miao \& Rao (2007) - learning multiple transformations
Sohl-Dickstein, Wang \& Olshausen (2010) - learned from natural movies
Culpepper \& Olshausen (2010) - manifold transport operators
Cohen \& Welling (2014) - posterior inference
Gklezakos \& Rao (2017) - transformational sparse coding
Connor \& Rozell (2023) - learning 3D transformations from 2D projections

Disentangling Images with Lie Group Transformations and Sparse Coding. NeurReps Workshop Proceedings, NeurIPS 2022.

Sophia Sanborn

Christian Shewmake

Chris Hillar

Bispectral Neural Networks. ICLR 2023

MNIST dataset

$$
\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 1 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
$$

Sparse coding model trained on MNIST (dictionary size $=10$)

$$
\mathbf{I}=\mathbf{\Phi} \alpha+\epsilon
$$

Factorizing images with Lie group transformations and sparse coding (Ho Yin Chau, Yubei Chen, Frank Qiu)

$$
\begin{aligned}
& \mathbf{I}=\mathbf{T}(s) \boldsymbol{\Phi} \alpha+\epsilon \\
& =e^{\mathbf{A} s} \mathbf{\Phi} \alpha+\epsilon \\
& \mathbf{T}(s)=e^{\mathbf{A} s} \\
& =\mathbf{W} e^{\boldsymbol{\Sigma} s} \mathbf{W}^{T}=\mathbf{W} \mathbf{R}(s) \mathbf{W}^{T} \\
& \boldsymbol{\Sigma}=\underbrace{\begin{array}{cc}
0 & -\omega_{1} \\
\omega_{1} & 0
\end{array}} \\
& \left.\begin{array}{cc}
0 & \\
\omega_{D / 2} & -\omega_{D / 2} \\
0
\end{array}\right] \quad \mathbf{R}(s)=\left[\begin{array}{ll}
\begin{array}{cc}
\cos \left(\omega_{1} s\right) \\
\sin \left(\omega_{1} s\right) & -\sin \left(\omega_{1} s\right) \\
\cos \left(\omega_{1} s\right) \\
\end{array} \\
\end{array}\right.
\end{aligned}
$$

$$
\mathbf{I}=\mathbf{W} \mathbf{R}(s) \mathbf{W}^{T} \boldsymbol{\Phi} \alpha+\epsilon
$$

Learning

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \ln P_{\boldsymbol{\theta}}(\mathbf{I}) & \approx \mathbb{E}_{\mathbf{s} \sim P_{\boldsymbol{\theta}}(\mathbf{s} \mid \mathbf{I}, \hat{\boldsymbol{\alpha}})}\left[\nabla_{\boldsymbol{\theta}} \ln P_{\boldsymbol{\theta}}(\mathbf{I} \mid \mathbf{s}, \hat{\boldsymbol{\alpha}})\right] \\
\hat{\boldsymbol{\alpha}} & =\arg \max _{\boldsymbol{\alpha}} P_{\boldsymbol{\theta}}(\boldsymbol{\alpha} \mid \mathbf{I})
\end{aligned}
$$

Inference

$$
\begin{aligned}
\hat{\alpha} & =\arg \max _{\alpha} P_{\theta}(\alpha \mid \mathbf{I}) \\
& =\arg \max _{\alpha}\left[\left\langle\ln P_{\theta}(\mathbf{I} \mid \mathbf{s}, \alpha)\right\rangle_{q(\mathbf{s})}+\ln P_{\theta}(\alpha)\right] \\
q(\mathbf{s}) & \leftarrow P_{\theta}(\mathbf{s} \mid \mathbf{I}, \hat{\alpha})
\end{aligned}
$$

2D Translation Dataset

$$
\begin{aligned}
& 3294020514582644 \\
& 3788842474576843 \\
& 8300059463091223 \\
& 71871889261873180 \\
& 8478360925296663
\end{aligned}
$$

Rotation + Scaling Dataset

Results: 2D translation

Results: 2D translation

Results: rotation and scale

Results：rotation and scale

	．		－	，			－	－	\bigcirc	，	2	－	5
c	T		－）	6	，	，	2	©	5	5	$\widetilde{ }$	c	
\bigcirc	©		8	T		（））	5	c	6	5	${ }^{2}$		5
5	\cdots		2	¢		（2）		＋	起	©	（\％）	7	－
	5		－	，	\％	2．	T		，\％			－	
	，		$\frac{1}{2}$	a		）	5	5				5	
	＊		，				x	त2	®		，	9	
			$\frac{\pi}{13}$	$\sqrt{2}$				3					
	\cdots						N	宩	逍	．			
	（e）			，				K				क	
							，						

Results: full MNIST

Results: full MNIST

learned W

(7)67		属	Rav			18	98	
	N		(6)	3	8	8	为	
48\% ${ }^{3}$,	sil	\%	a)		

The bispectrum

Fourier transform

$$
f(x) \quad \stackrel{\mathscr{F}\{f(x)\} \equiv \int f(x) e^{-j \omega x} d x}{\longleftrightarrow} \tilde{f}(\omega)=|\tilde{f}(\omega)| e^{j \phi(\omega)}
$$

Power spectrum

$$
C(\Delta x)=\langle f(x) f(x-\Delta x)\rangle_{x} \longleftrightarrow \stackrel{\mathscr{F}}{\longleftrightarrow}|\tilde{f}(\omega)|^{2}=\tilde{f}(\omega) \tilde{f}^{*}(\omega)
$$

Bispectrum

$$
\begin{array}{ll}
C\left(\Delta x_{1}, \Delta x_{2}\right)= & \mathscr{F} \\
\left\langle f(x) f\left(x-\Delta x_{1}\right) f\left(x-\Delta x_{2}\right)\right\rangle_{x} &
\end{array} \quad \begin{gathered}
B\left(\omega_{1}, \omega_{2}\right)= \\
\tilde{f}\left(\omega_{1}\right) \tilde{f}\left(\omega_{2}\right) \tilde{f}^{*}\left(\omega_{1}+\omega_{2}\right)
\end{gathered}
$$

Fourier shift theorem

$$
\begin{gathered}
f(x-\Delta x) \\
\mathscr{F}\{f(x-\Delta x)\}=e^{-j \omega \Delta x} \tilde{f}(\omega)
\end{gathered}
$$

Power spectrum is invariant to shift (but excessively so)

Power spectrum

$$
\begin{aligned}
\tilde{f}(\omega) \tilde{f}^{*}(\omega) & =|\tilde{f}(\omega)| e^{j \phi(\omega)}|\tilde{f}(\omega)| e^{-j \phi(\omega)} \\
& =|\tilde{f}(\omega)|^{2}
\end{aligned}
$$

Power spectrum of shifted pattern

$$
\begin{aligned}
e^{-j \omega \Delta x} \tilde{f}(\omega) e^{j \omega \Delta x} \tilde{f}^{*}(\omega) & =|\tilde{f}(\omega)| e^{j(\phi(\omega)-\omega \Delta x)}|\tilde{f}(\omega)| e^{-j(\phi(\omega)-\omega \Delta x)} \\
& =|\tilde{f}(\omega)|^{2}
\end{aligned}
$$

The Importance of Phase in Signals

ALAN V. OPPENHEIM, fellow, ieee, and JAE S. LIM, member, ieee

Invited Paper

Fig. 3. (a) Original image A. (b) Original image B. (c) Image synthesized from the Fourier transform phase of image A and the magni-
tude of image B (d) tude of image B. (d) Image synthesized from the Fourier transform
magnitude of image A and the phase of image B .

Bispectrum is invariant to shift (and unique)

Bispectrum

$$
\begin{aligned}
\tilde{f}\left(\omega_{1}\right) \tilde{f}\left(\omega_{2}\right) \tilde{f}^{*}\left(\omega_{1}+\omega_{2}\right) & =\left|\tilde{f}\left(\omega_{1}\right)\right| e^{j \phi\left(\omega_{1}\right)}\left|\tilde{f}\left(\omega_{2}\right)\right| e^{j \phi\left(\omega_{2}\right)}\left|\tilde{f}\left(\omega_{1}+\omega_{2}\right)\right| e^{j \phi\left(\omega_{1}+\omega_{2}\right)} \\
& =\left|\tilde{f}\left(\omega_{1}\right)\right|\left|\tilde{f}\left(\omega_{2}\right)\right|\left|\tilde{f}\left(\omega_{1}+\omega_{2}\right)\right| e^{j\left(\phi\left(\omega_{1}\right)+\phi\left(\omega_{2}\right)-\phi\left(\omega_{1}+\omega_{2}\right)\right)} \\
& =\left|B\left(\omega_{1}, \omega_{2}\right)\right| e^{j\left(\phi\left(\omega_{1}\right)+\phi\left(\omega_{2}\right)-\phi\left(\omega_{1}+\omega_{2}\right)\right)} \equiv B\left(\omega_{1}, \omega_{2}\right) \\
& \quad \begin{array}{c}
\uparrow \\
\text { relative phase }
\end{array}
\end{aligned}
$$

Bispectrum of shifted pattern

$$
\begin{aligned}
e^{-j \omega_{1} \Delta x} \tilde{f}(& \left.\omega_{1}\right) e^{-j \omega_{2} \Delta x} \tilde{f}\left(\omega_{2}\right) e^{j\left(\omega_{1}+\omega_{2}\right) \Delta x} \tilde{f}^{*}\left(\omega_{1}+\omega_{2}\right)= \\
& \left|B\left(\omega_{1}, \omega_{2}\right)\right| e^{j\left(\phi\left(\omega_{1}\right)-\omega_{1} \Delta x\right)} e^{j\left(\phi\left(\omega_{2}\right)-\omega_{2} \Delta x\right)} e^{-j\left(\phi\left(\omega_{1}+\omega_{2}\right)-\left(\omega_{1}+\omega_{2}\right) \Delta x\right)} \\
= & \left|B\left(\omega_{1}, \omega_{2}\right)\right| e^{j\left(\phi\left(\omega_{1}\right)+\phi\left(\omega_{2}\right)-\phi\left(\omega_{1}+\omega_{2}\right)\right)} e^{\left.j\left(-\omega_{1} \Delta x-\omega_{2} \Delta x\right)+\left(\omega_{1}+\omega_{2}\right) \Delta x\right)} \\
= & B\left(\omega_{1}, \omega_{2}\right)
\end{aligned}
$$

Fourier shift theorem

$$
\begin{gathered}
f(x-\Delta x) \\
\mathscr{F}\{f(x-\Delta x)\}=e^{-j \omega \Delta x} \tilde{f}(\omega)
\end{gathered}
$$

How to learn the group underlying the bispectrum?

Learning the bispectrum from data

Bispectrum ansatz

Weight Matrix

Orbit separation loss

$$
L\left(x_{i}\right)=\sum_{j \mid y_{j}=y_{i}}\left\|\bar{\beta}\left(x_{i}\right)-\bar{\beta}\left(x_{j}\right)\right\|_{2}+\gamma\left\|x_{i}-W^{\dagger} W x_{i}\right\|_{2}
$$

Learned W
 (trained on natural image patches)

2D rotation
$S O(2)$

Robustness to adversarial perturbation

E2CNN

Augerino

Bispectral Networks

			r					,
97	7	4	1	9	\sim	0	\%	S
†		-	3	5		A	P	
02		6	7	9	C.	4	ε	9
$6=$		\wedge	6	σ	6	M	8	N
(n)			∞_{0}	8	\backslash	1		9

				C]	,			GI
\bigcirc	-	a	1	9	2	0		,
\cdots	∞	1	-	\cdots	-	-	8	3
0	m	\bigcirc	1	ϑ	3	0	d	a
9		4	9	6	9	\mathcal{L}		U
5	5		(1)	c	1	K		,
	9			ज	d			9

Main points

+ Invariance - the ability to perceive shape independent of pose - evolved from the need to geometrically reason about the environment.
+ Computing transformations is fundamental to enabling this.
+ Lie groups provide a promising mathematical framework for modeling the neural computations underlying our ability to compute transformations.
+ Representations may be learned from data, and could provide a new computational primitive for deep learning.

